
 

39 
 

RELIEF ASPECTS 

A METHOD FOR CREATING PAPERCRAFT RAISED 
RELIEF MAPS FROM DIGITAL ELEVATION 
MODELS 

Jürnjakob Dugge1, Johann Dugge2 
1 Stuttgart, Germany 
2 Brussels, Belgium 

ABSTRACT 
Raised relief maps provide a particularly intuitive and engaging way to represent topography. 
Depending on the intended use of the map, different methods are used for producing raised 
relief maps. These include manual sculpting and painting of plaster models, manual or semi-
automatic construction from wood or cardboard layers, and automatic production using a 3D 
printer. These methods vary in terms of accuracy and realism of the final product, the cost, 
effort and skill involved in the production, and in the suitability for reproducing different types 
of topography. In general, the production of raised relief models is either expensive, difficult, 
or labour intensive. 

We present a method for producing low-cost full-colour raised relief maps from digital 
elevation models (DEMs) by creating a papercraft model of the DEM. The method involves 
the following steps: converting the DEM to a triangulated irregular network (TIN), unfolding 
the TIN, printing the unfolded TIN on paper, and assembling the printout into a physical 3D 
model. This method allows for the production of raised relief maps without the need for 
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specialised equipment or extensive training and experience. The degree of realism of the 
resulting maps is similar to that of wood layer models. 

The quality of the final raised relief model depends crucially on the characteristics of the TIN. 
We discuss the requirements that make a TIN suitable for use in a papercraft raised relief 
model and present a novel algorithm for converting a gridded DEM to a TIN that takes these 
requirements into account.  

Keywords: raised relief map, paper model, triangulated irregular network 

1 INTRODUCTION 
Raised relief maps, also called terrain models or relief models, are the most immediate way 
to represent topography. In conventional maps, the elevation information has to be encoded 
in the form of spot heights, contour lines or relief shading, which requires knowledge and 
experience in order to be decoded by the viewer. By contrast, raised relief maps, as three-
dimensional models of the physical landscape, convey the elevation information directly and 
can thus be understood by the viewer without special training or explanation. It is this 
immediate representation of physical features and the provision of a bird’s eye view that 
makes raised relief maps so fascinating and attractive. 

Merely looking at a raised relief map already fosters an understanding of the topography that 
would be hard to achieve with topographic maps alone, but going through the process of 
constructing a raised relief map does even more to enhance the understanding of the 
landscape and of the map that represents it: Eduard Imhof gives the advice that “at least once 
in their early years, cartographers, topographers, geographers, and geologists should 
construct a terrain model based on an interesting contour plan” (Imhof 1982). Today, digital 
elevation models have taken the contour plan’s place as the method of choice for storing and 
transmitting elevation information, and so the recommendation might now be that at least 
once should we turn the digital elevation data we are working with into a physical artefact that 
we can hold in our hands. In this paper, we present a method for following this advice by 
creating papercraft raised relief maps from digital elevation models. 

A vast array of methods for creating raised relief maps exist, varying in accuracy and realism 
of the final product, the cost, effort and skill involved in the production, and in the suitability 
for reproducing different types of topography. The website terrainmodels.com provides a 
good overview of the different methods and showcases a large number of different raised 
relief models. 

Among the most realistic raised relief maps are hand-made plaster models. Professionally 
made plaster models are mainly used for touristic and educational purposes in museums, 
exhibitions and visitor centres (Räber and Hurni 2008), where they often form the centre of 
attention (Buchroithner 2007). The process of creating such models is very involved and takes 
years to master (Mair 2012), making it infeasible for many applications. 

A much faster and more affordable way of creating detailed raised relief maps that has been 
gaining traction is the use of 3D printers (e.g. von Wyss 2015). Currently, most consumer 
grade 3D printers can only produce relatively small uncoloured models.  

The simplest and most wide-spread type of raised relief map is the layer model or step model, 
which consists of a stack of thick paperboard or wood layers, each layer corresponding to a 
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contour line on a topographic map. These raised relief maps are popular for use in architectural 
models, because their production is comparatively easy and inexpensive, and because the 
resulting horizontal surfaces allow for the simple addition of building models. Layer models 
are mainly useful for depicting gentle terrain types. For areas with steep terrain and several 
isolated peaks, the number of layers and layer parts that need to be cut, positioned and glued 
quickly makes the construction cumbersome. 

A different approach for creating physical 3D models without specialised equipment is to cut 
out pieces of paper that can be glued together to form a hollow body in the shape of the object 
to be modelled, resulting in a “papercraft” model. In order to use this technique for creating 
a raised relief map, a suitable representation of the landscape surface has to be found that 
can be cut from paper sheets. One way to generate such a representation is to use a manifold 
of triangles approximating the surface, similar to the way 3D objects are represented in 
computer games. Using only a small number of triangles results in a faceted appearance, the 
“low-poly aesthetic” that is found in the work of visual artists since the early 2010’s, where 
low numbers of polygons are used not due to technical limitations, but as an artistic technique 
(Schneider 2014). The work of Timothy Reynolds is an example of this visual style where the 
structure of the underlying 3D models is deliberately made visible (Figure 1).  

a) Map Wars, 2013.  b) Untitled, 2014. 

Figure 1: Examples of “low-poly aesthetic” artwork by Timothy Reynolds, where the individual polygons of the 
underlying 3D models are deliberately made visible. Reproduced with permission by the artist. 

The process for creating a papercraft raised relief map from a digital elevation model consists 
of the following steps, which will be described below: 

─ creating a 3D triangle mesh that approximates the digital elevation model 

─ optionally adding a texture to the mesh 

─ unfolding the mesh to a 2D representation 

─ printing and cutting the unfolded mesh 

─ assembling the cut out mesh into a physical 3D model. 
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2 CREATING THE MESH 

2.1 MESH PROPERTY REQUIREMENTS 

In order for the mesh to be suitable for constructing physical paper models, the triangle 
elements of the mesh need to fulfill a number of quality criteria. 

High fidelity of the approximation: The triangulation should be as faithful to the digital 
elevation model as possible, that is, the overall error between the approximation and the full 
gridded terrain model should be as small as possible. There are different ways of measuring 
the approximation fidelity, with the two most common error metrics used for assessing the 
quality of a surface approximation being the maximum vertical distance between the grid and 
the mesh, and the root mean square of the vertical distances (Heckbert and Garland 1997). 
These metrics have the advantage of being fast to evaluate, but they are overly sensitive to 
horizontal errors. A more robust method is the sampled symmetric closest distance described 
in Garland (1999): for every point in the original grid, the distance to the closest point on the 
grid-sampled triangle mesh is calculated, and conversely for every point on the grid-sampled 
triangle mesh, the distance to the closest point on the original grid is calculated; since these 
distances are not generally the same, the average of both values is taken. 

Small number of triangles: When constructing the paper model from the triangulation, every 
triangle requires a certain amount of time: it needs to be scored, cut, folded and glued. The 
construction process also becomes more complicated with increasing numbers of triangles, 
since the number of possible combinations rises, and the overall accuracy of the paper model 
decreases, since inaccuracies in gluing parts can accumulate. Therefore, in order to ensure 
that the construction process remains possible in practice, the number of triangles in the 
triangulation needs to be limited. Takahashi et al. (2011) suggest an upper limit of 500 
triangles. Generally, the smaller the number of triangles, the faster, easier and more accurate 
is the construction process. 

Similar triangle size throughout the mesh: In triangle approximations, areas of the original 
mesh that are planar can be represented using only a few large triangles, while strongly 
undulating areas need to be represented using many small triangles. For most applications, 
this adaptive nature of triangulated irregular networks is a desirable feature, since it reduces 
the storage size of the network by eliminating redundant information. However, from an 
aesthetic point of view, meshes with large variations in triangle size are undesirable. The 
difference in triangle size draws unwanted attention to the nature of the approximation and 
distracts from the object being portrayed. While from a mathematical point of view it might 
not be necessary to split up large planar areas into smaller triangles, it helps the viewer to 
better understand the landscape features when there is a relatively homogenous “resolution” 
to the model. A single large triangle next to many small ones tends to look like an error or a 
patch of missing data; splitting that triangle up into several smaller triangles, while effectively 
resulting in the same surface, communicates to the viewer more clearly that the planarity of 
the area is indeed an accurate representation of the underlying data, and not merely an artifact 
introduced by the triangulation. 

Good triangle shapes: The shapes of the triangles have a large impact on the ease of 
construction of the resulting paper model. Long, narrow “sliver triangles” are problematic for 
constructing paper models for several reasons: they are more sensitive to inaccuracies when 
cutting or scoring the triangle edge, as a small angular deviation from the correct direction 
results in a large relative error of the resulting triangle’s area and edge lengths; they are harder 
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to fold along the edge, since the narrow tips have a tendency to bend instead of fold; and they 
offer only small area for attaching the glue tab of a neighbouring triangle, making the 
connection less secure. The ideal triangle element for our application is an equilateral triangle. 
Deviations from this ideal shape can be measured in a number of ways (Shewchuk, 2002), 
one useful metric being the shape reqularity quality q proposed by Bank and Smith (1997): for 
each triangle, we calculate the ratio of the triangle area and the sum of the squared edge 
lengths, normalised to equal one for an equilateral triangle and approach zero for a degenerate 
triangle. 

2.2 PREVIOUS ALGORITHMS 

A vast number of algorithms have been proposed for generating polygonal meshes from high 
resolution data. For good overviews of the topic, see Heckbert and Garland (1997) and Luebke 
(2001). 

For the application of creating papercraft raised relief maps, we considered a number of 
existing algorithms. We briefly describe the algorithms, and show the result generated when 
applying them to the same elevation dataset of the Matterhorn, specifying a target triangle 
count of 150. The elevation dataset has a resolution of 400 x 400 pixels, covering an area of 
2,000 m x 2,000 m (Figure 2a). 

The most straightforward way of triangulating a gridded elevation dataset is to create a 
downsampled version of the original grid and then create a regular grid triangulation 
(Figure 2b). Generally, this algorithm leads to a poor approximation fidelity, because there is 
no mechanism for including important characteristic points of the terrain in the triangulation, 
so peaks, valleys and ridges are easily missed. 

In order to improve the approximation fidelity, the points to be included in the triangulation 
should be chosen not by using regular sampling, but based on their contribution to the overall 
terrain shape. 

One popular method for choosing the points is the greedy refinement algorithm described by 
Garland and Heckbert (1995). It starts with a triangulation consisting of the four corner points 
of the domain. In each step, the vertical errors between each grid point and the triangulation 
are calculated, and the point with the largest vertical error is added to the mesh (Figure 2c). 
This algorithm is extremely fast, but because it only regards the largest vertical error it does 
not typically lead to results with low overall errors, and because it does not take the shapes 
of the resulting triangles into account when choosing which points to add, the resulting 
triangulation often includes many sliver triangles and triangles of uneven sizes. 

Instead of iteratively refining a simple mesh, decimation algorithms start with a full 
triangulation and iteratively simplify the model. The popular QSLIM algorithm (Heckbert and 
Garland 1999) simplifies the model by merging the vertices of edges, starting with the merge 
operation that has the smallest impact on the overall error. This algorithm typically performs 
much better than the greedy refinement algorithm in terms of approximation fidelity and 
triangle quality, but still misses some characteristic features of the terrain and includes narrow 
triangles (Figure 2d). 

None of the surveyed methods were found suitable for the specific purpose of generating 
meshes for building papercraft models. We therefore propose a new method using an 
optimisation approach that takes into account all of the requirements described in section 2.1. 
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2.3 PROPOSED OPTIMISATION ALGORITHM 

In an optimisation algorithm, an initial solution to a given problem is iteratively improved by 
making small adjustments, evaluating the quality of the adjusted solution according to some 
objective function, and using the new solution as the starting point for the next iteration, 
approaching an optimum solution over time. 

The objective function forms the heart of any optimisation algorithm. It is important that it 
captures the essence of the problem, but approximations may be necessary to reduce the 
computational cost of evaluating potentially thousands of solutions. In our proposed method, 
we use an objective function, described below, that evaluates the approximation fidelity and 
the quality of the triangle shapes. The number of triangles is specified by the user, and the 
desired similarity in triangle sizes is implicitly accounted for by the triangle shapes and by the 
initial solution. 

Our method starts by generating a mesh with a specified number of triangles using a greedy 
algorithm (Stage 1) and then attempts to improve it iteratively by repeatedly adjusting either 
the mesh connectivity (Stage 2a) or shifting node positions (Stage 2b). Throughout stage 2, 
the number of triangles as well as the number of nodes on the boundary and inside of the 
DEM domain remains unchanged. In each iteration, changes to node position or connectivity 
are evaluated by this objective function and accepted only if they yield an improvement. 

2.4 STAGES 

Stage 1: Initial Vertex Distribution 

Areas of large variation in the terrain will require a higher relative density of nodes than flat 
areas. The initial vertex placement is critical to the final result of our optimisation algorithm 
because it will only proceed with changes if they bring an improvement to the objective 
function MT and it is difficult to escape from a local optimum. 

Our meshing starts with four points placed on the corners of the domain, yielding two 
triangles. For each additional point PB  on the boundary we gain one additional triangle while 
each point PI on the interior of the domain yields two additional triangles. The number n of 
triangles can be computed as n = 2 + (PB - 4) + 2 PI (de Berg 2008: 193). 

As we have two independent variables, many solutions may be possible to obtain a certain 
number n of triangles. We introduce a new constraint: assuming all triangles had the same 
size, each would cover an area AT = AD/n, where AD is the total area of the domain. The edge 

length aT of an equilateral triangle with area AT is given by்ܽ = ට4 ்ܣ √3⁄ . Dividing the 

boundary of the domain aD into segments of length aT gives the number of nodes to be placed 
on the boundary, PB. The number of nodes to be placed inside can now be calculated as 
PI= round( ½ (n + 2 - PB)). If needed for achieving the specified number of triangles, one 
additional node is added to the boundary. 
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a) Source DEM 

 

b) Regular 

 

c) Greedy 

 

d) QSLIM 

 

e) Proposed method 

 

Figure 2: Comparison of the triangle meshes generated using different existing algorithms and the proposed 
method, showing an oblique and a top-down view. 
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To distribute the additional points, a method similar to the greedy algorithm described in 
section 2.2 is used. However, instead of using just the vertical error for determining which 
point to add, we first weight the error using the maximum local absolute Gaussian curvature 
to identify important features such as peaks, ridges and gullies, as described by Leonowicz 
(2010). The search for the point with the largest vertical error is constrained to the domain 
boundary until all PB boundary points have been added. The internal points PI are then 
distributed in a similar fashion, however this time excluding the domain boundary from the 
candidate search. This two-stage approach reduces the risk of creating sliver triangles along 
the domain boundary. 

Objective Function: We define two competing measures for our objective: the average 
terrain fidelity and the average triangle shape quality. 

For calculating the terrain fidelity MF, we use the average vertical error over all grid points, 
normalized by the variance of the terrain grid, and weighted using the inverse of the horizontal 
distance from the point to the edge of the corresponding triangle. The distance is measured 
as the minimum of the barycentric coordinates of the point raised to a power p=2, plus 1, then 
scaled to a mean of 1, which assigns greater weight to points on the triangle edges, since 
these have a greater impact on the appearance of the model (Figure 3). 

a) Oblique view of a triangle mesh 

 

b) 2D projection of the mesh 

 

c) Weight map for the the vertical errors. 
Errors on triangle edges are weighted 
more strongly than errors in triangle 
interiors 

 

Figure 3: Vertical error weighting. 

The triangle shape quality q described in section 2.1 is averaged across all triangles to yield an 
overall shape metric MS, with all triangles contributing equally to the overall score, regardless 
of their area. By penalising triangles with small angles, large variations in triangle area between 
neighbouring triangles are implicitly penalised as well. 
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To combine the fidelity and shape metrics into an overall objective function, a weighted 
average MT for the whole triangulation is computed as MT=c MF+ (1-c) MS  Values of c=0.8-
0.95 have yielded good results in our experiments. 

Stage 2a: Quad Flipping 

For any pair of adjacent triangles (quads) that form a convex boundary in 2D there are two 
alternative connectivities where the triangles do not overlap. Unless all points are in the same 
plane, these yield different surfaces – one with a ridge, and the other with a valley. Our first 
step in each iteration is to check if flipping any quads yields an improvement in the objective 
function. Quads that rank the poorest in contribution to the objective function will be checked 
first. After a flip all quads of the new mesh are ranked again and the process is repeated until 
no further improvement can be obtained through flipping.  

Stage 2b: Node Shifting 

After the quad flipping stage, the positions of a randomly selected set of nodes are slightly 
shifted horizontally and assigned the elevation values of the gridded dataset at the 
corresponding new position. For shifting the node positions, we used a method based on the 
concept of Simultaneous Perturbation Stochastic Approximation described by Spall (1998): in 
each step a perturbation of the mesh is performed in opposite directions, and the direction 
yielding the best improvement of the total objective MT is selected. If neither perturbation 
improves the objective another random perturbation is generated (Figure 4). 

In our implementation, when a certain number of unsuccessful perturbations has been 
reached we reduce the number of randomly selected nodes that are perturbed, which allows 
discovery of more localised improvements as the groups become smaller. The optimisation 
ends when the number of perturbed nodes falls below a certain threshold. 

Perturbations can be larger than the length of a single grid cell, which makes it possible to 
overcome local minima by skipping some cells. To improve convergence, the nodes’ 
perturbations are grouped into independent areas, and each group is evaluated and improved 
separately. 

    

a) Input mesh and 11 
randomly selected 
nodes, forming 6 
groups. 

b) Random perturba-
tion of the selected 
nodes in ‘+’ 
direction. 

c) Opposite perturba-
tion, designated ‘–’ 
direction. 

 

d) Combination of 
best ‘+’ / ‘–’ 
perturbations of the 
individual groups. 
Red groups did not 
improve with 
perturbation. 

Figure 4: Simultaneous Perturbation Stochastic Approximation of 11 randomly selected nodes forming 6 groups. 
Constraints are enforced on edge and corner nodes. Perturbations that would change the orientation of a 
triangle are dismissed. Notice that the perturbation at each node can have a different magnitude and direction, 
independent of the others. 
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2.5 COMPARISON OF RESULTS 

From visual inspection of the meshes shown in Figure 2, one can see that the meshes 
resulting from the different algorithms have very different characteristics. These differences 
are also evident when analysing the quality criteria set out in section 2.1. 

The approximation fidelity metrics of the meshes generated using the different algorithms are 
shown in Table 1. The proposed method performs best in terms of all error metrics apart from 
the maximum vertical distance, where the greedy algorithm performed slightly better. This is 
to be expected, since the objective function of the proposed method does not take the 
maximum vertical error into account, while the greedy method uses the maximum vertical 
distance as the sole driving factor. Generally, the average metrics (mean absolute error and 
root mean squared error) are more meaningful for assessing the overall shape fidelity, with 
the maximum error primarily being used as an indicator for the presence of outliers. 

Table 1: Error metrics for the meshes generated using different algorithms: maximum error, mean absolute error (MAE), 
root mean squared error (RMSE) 

 Vertical distance (m) Symmetric distance (m) 

Algorithm Max MAE RMSE Max MAE RMSE 

Regular 339.9 53.9 70.3 110.2 29.8 35.8 

Greedy 199.8 26.8 34.9 86.4 17.0 22.0 

QSLIM 215.4 25.7 34.4 77.4 15.4 19.3 

Proposed method 202.7 19.4 25.6 53.9 11.9 14.4 

 

To assess the triangle shape quality and the similarity in triangle sizes of the different meshes, 
all triangles of each mesh are plotted in Figure 5. In the left column, the unscaled triangles are 
shown: the range of triangle sizes of the regular method and the proposed method are similar, 
while both the greedy and QSLIM algorithms generate triangles with a much wider range of 
sizes. The shapes of the triangles can be assessed by normalising the triangles so their widest 
side has a length of 1 and comparing them to an ideal equilateral triangle, shown in the right 
column. It can be seen that the triangles generated using the proposed method are generally 
more similar to the ideal triangle, and don't vary in shape as much as those generated using 
the other methods. 

3 TEXTURING THE MESH 
The paper model can either be left uncoloured, or a texture can be applied before unfolding 
and printing the mesh. Since the model does not contain any overhangs or vertical faces, an 
image such as a topographic map, a satellite image or an orthophoto can simply be vertically 
projected onto the mesh. It should be noted that in steep areas of the model, the image is 
stretched, so the image needs to be of a higher resolution than would be necessary for strictly 
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vertical viewing. This problem could be mitigated by using terrestrial imagery for the steep 
areas, or by using a vector topographic map instead of a raster image. 

a) Regular 

  

b) Greedy 

  

c) QSLIM

  

d) Proposed method 

 

 

Figure 5: Comparison of the triangle shapes of the triangulations generated using different existing algorithms and 
the proposed method. Triangles are rotated to have their longest side aligned with the horizontal axis. In the 
left column, the triangles are unscaled, in the right column, each triangle is scaled so its longest side has a 
length of 1. For orientation, in the right column an equilateral triangle is plotted in black. 
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In our experience, satellite or aerial imagery tends to work better for texturing the model than 
topographic maps: due to the geometry simplification, contour lines of topographic maps will 
generally not lie strictly at the same level when projected onto the mesh, which can be 
confusing to the viewer. Similarly, for models with sharp peaks and ridge lines, satellite or 
aerial imagery taken under strongly oblique lighting conditions is less suitable, because it tends 
to make the geometry simplification stand out along edges with changes in incident light 
angles. 

4 UNFOLDING THE MESH 
In order to print the model, it needs to be unfolded so all the triangles lie in the same plane. 
To make the model unfoldable, some edges of the mesh need to be cut in such a way that 
the triangles are only joined along a spanning tree of the original mesh and none of the 
unfolded triangles overlap (Straub 2011). For the latter requirement, it can be necessary to 
split the model into separate groups of triangles, so-called islands, that are not connected to 
each other. Splitting an island further is also necessary if it is too large to fit on a single paper 
sheet for printing. A naive approach would be to simply cut all edges, resulting in a set of 
islands each only containing one triangle. However, after printing and folding the model, the 
cut edges need to be glued back together, which is the most labour intensive part of the model 
building process. It is therefore desirable not to introduce an unnecessarily high number of 
cuts. Takahashi et al. (2011) presented a genetic algorithm that attempts to find an unfolding 
that results in a single island containing all triangles. While this tends to reduce the number of 
cut-and-glued edges, it also results in a rather unwieldy cut-out that is hard to assemble. We 
found island sizes of 5 to 20 triangles to generally be the easiest to work with. To unfold the 
models, we used the “Export paper model” software (Dominec 2016), which prioritises which 
edges to cut according to a weighted score consisting of the edge length and the angle 
between the two triangles. The software also automatically generates labelled glue tabs for 
assembling the model. Some manual editing of the automatically placed cuts can be helpful 
in order to obtain island shapes that can be more economically arranged on the pages for 
printing, but in general we found the algorithm to produce satisfactory results without manual 
intervention. 

5 PRINTING, CUTTING AND GLUING THE MESH 
The unfolded islands could be printed on standard office paper, but depending on the size of 
the final model, stronger paper with a weight of 120 g/m2 tends to lead to better results. After 
printing, the islands are cut out and the folding edges are scored in order to obtain a more 
precise fold. Cutting and scoring can be done manually using a craft knife and a metal 
straightedge. There are also consumer grade cutting plotters available which can automate 
the cutting and scoring to some degree. Models which can align the cutting paths with the 
printed pattern are available for under EUR 200.  

After cutting and scoring the islands, the model is folded and the cut edges are glued together. 
For this step, we found it helpful to have the 3D model available on a computer screen in order 
to check how the parts need to be folded and joined. Generally, it is advisable to start the 
assembly process in model areas with sharp folds, as these are harder to assemble at the 
end. 
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6 RESULTS 
The method described above was used to create papercraft raised relief maps of several 
topographic features. Figure 6 shows some of the completed models and the unfolded 
triangles meshes used for constructing the models. The parameters used in the algorithm for 
converting the gridded elevation data to triangle meshes were kept identical for all three 
models, only the number of triangles varied. 

a) Matterhorn, Switzerland. 150 triangles.

 

b) Uluru, Australia. 200 triangles.  

c) Tre Cime di Lavadero, Italy. 200 triangles.

 

 

 

Figure 6: Examples of finished papercraft raised relief models (left column) and the unfolded triangle meshes used 
for their construction (right column). 



Jürnjakob Dugge, Johann Dugge  

52 
 

7 CONCLUSION 
Raised relief maps are a highly intuitive way to represent topography, and making a model is 
an instructive way to engage with the object being modelled. The presented approach is a 
practical way to quickly generate low-cost, full-colour models that can be built without 
requiring intensive training and do not require specialised equipment. The proposed algorithm 
for converting gridded elevation data to triangulated meshes suitable for papercraft modelling 
addresses the specific requirements of this application, and produces useful results for a 
variety of terrain types. 
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